- AC_{VI} Gene Transfer for CHF -

- Rationale
- Preclinical Data
- Proposed Clinical Trial

H. Kirk Hammond, M.D. Professor of Medicine University of California San Diego VA San Diego Healthcare System

- AC_{VI} Gene Transfer for CHF -Unmet Medical Need, Reduced Morbidity

Intracoronary Delivery

- Prevalent disease most common non-elective admitting diagnosis in patients >60 years old
- Current therapy 40% mortality 3 yr after onset of Class III/IV symptoms

- Current therapy has substantial side-effects
- No thoracotomy reduced morbidity & mortality vs strategies that require invasive procedures
- New strategy would provide an option for patients not suited for CABG, PCI or other therapies

Adenovirus Encoding AC_{VI}

- Heart Failure -

Can we safely increase LV contractility ?

- AC_{VI} Gene Transfer -Neonatal Rat Cardiac Myocytes

Hypothesis

AC content limits cardiac myocyte adrenergic responsiveness

- PNAS 95: 1038-1043, 1998

- Cardiac-Directed AC_{VI} Expression -*Murine Cardiomyopathy*

- AC_{VI} in Cardiomyopathy -LV Function and cAMP

- AC_{VI} in Cardiomyopathy -Effect on Hypertrophy & Mortality

- Circulation 105: 1989-1994, 2002

- Intracoronary Gene Transfer -Adenovirus Encoding AC_{VI} in Pigs with CHF

AC_{VI} Gene Transfer

Adenovirus Vector

TATATA

00000

- Intracoronary Delivery of Adenovirus -

1.4 x 10¹² vp adenovirus encoding nuclear-tagged lacZ. Five days after coronary delivery, substantial gene transfer was seen in the heart, without inflammation. Blue color indicates gene transfer. LV Transmural sections. Left panel, 30X; Right Panel, 200X.

- Circulation 102: 2396-2401, 2000

- Intracoronary Ad.AC_{VI} -LVAC_{VI} Expression & Duration of Effect

- Circulation 102: 2396-2401, 2000

Intracoronary Delivery of Adenovirus *Effect of Nitroprusside*

- Intracoronary Gene Transfer -Transcytosis of Adenovirus ?

- Intracoronary Ad.AC_{VI} in CHF -Increased Contractility 14d after Gene Transfer

- Ad.AC_{VI} in Pacing-Induced CHF in Pigs -Improved LV Geometry, Function and cAMP Generation

Pre vs 21d	PBS n=9	AC _{VI} n=6	р			n=0.006
EDD Increase - mm -	18±2	13±2	0.04			
FS Decrease - % unit -	29±2	23±3	0.03			
Vcf Decrease	1.1±0.1	0.7±0.1	0.008		9	7
- (11 (/ 5 -				ļ	PBS	Ad.AC _{VI}

- Data obtained before and after 21d of continuous LV pacing
- Gene transfer on Day 7 (CHF present)
- Blinded study

- AC_{VI} Gene Transfer for CHF -Clinical Trial Design

Intracoronary Delivery

Adenovirus Encoding Human AC_{VI}

- Recombinant Adenovirus Encoding AC_{VI} -

E1/E3- Deleted Recombinant Adenovirus Encoding Human AC_{VI}

- Gene Transfer for CHF -Intracoronary Ad5.AC_{VI}

Objective

Examine safety and identify dose(s) that warrant further study in larger trials

End Point

6 minute walk test before and 4 and 12 weeks after treatment

Follow-Up

Careful monitoring, visits for 12 weeks, interviews at 6 and 12 months

- AC_{VI} Gene Transfer for CHF -*Enrollment And Exclusions*

Enrollment-

- Stable CHF, Class III/IV
- ≥ 1 yr history of CHF
- LVEF ≤35%
- 6-min walk: 25–300 meters
- 21-75 years of age

Exclusions-

- Decompensated CHF, iv inotropes
- CAD: Severe 3 vessel or LM
- Angina \geq Class 2 or unstable
- Immune suppressive agents
- Creatinine >2.5 mg/dL
- Liver disease
- VT/VF with syncope unless AICD
- Women of child-bearing potential

- AC_{VI} Gene Transfer for CHF -*Protocol*

Double-blind, 3:1 randomization (Ad5.AC_{VI}: Placebo)

Intracoronary infusion (40% RCA, 60% LCA) with intracoronary nitroprusside (50 µg/min, 3 min)

5 Doses (a) 0.5 log increments: $3 \ge 10^9$ to $3 \ge 10^{11}$ vp

In-hospital observation (overnight)

Follow-up (Weeks 1, 2, 4, 8, 12; Months 6, 12)

Exercise testing (Weeks 4 and 12)

Adenovirus Surveillance

- Pulmonary artery (during administration)
- Venous blood (1 hr after administration)
- Urine (first 6 hours after administration)
- Antibody titers (baseline and 12 weeks)

Holter Monitoring (baseline and Week 2)

PE, ECG & Blood Samples (Weeks 1,2,4,12; Months 6,12)

- Liver function (SGOT, SGPT, LDH, alkaline phosphatase, bilirubin, albumin)
- Cardiac (CPK, CPK-MB, Troponin)
- CBC, electrolytes, BUN, creatinine, urinalysis
- BNP, norepinephrine, epinephrine

- AC_{VI} Gene Transfer for CHF -Clinical Testing & Procedures

	Screen	D 1	W 1	W 2	W 4	W 12	M 6	M 12
6 Minute Walk Test	XX				Χ	X		
Interview	X	Χ	X	X	X	X	X	X
Physical Examination	Χ	X	X	Χ	X	X	X	X
Urine Sample	Χ		X	X	X	X		
Blood Sample	Χ	X	X	X	X	X	X	X
Chest Radiogram	X					X		
ECG	X	X	X	X	X	Χ		
24 Hour Holter	X	X*		X				
Echocardiogram	X				X	X		
Coronary Angiogram		X						
Ad5.AC _{VI} or PBS		X						
Right Heart Catheterization		X			X			

+ Dose Escalation, Termination of Trial

- The NHLBI DSMB will monitor the trial & manage randomization; members periodically will be unblinded to evaluate safety & efficacy.
- Adverse events will be reported to the DSMB and other agencies.
- The DSMB will make decisions regarding advancing to the next dose or ending the trial due to toxicity.
- The DSMB may ask that additional patients be recruited in a dose-group to evaluate toxicity or efficacy (limit 16 patients: 12 Ad5.AC_{VI}, 4 placebo).
- Otherwise, the study will be completed as proposed.

- AC_{VI} Gene Transfer for CHF -

Dose Groups and Potential Outcome

Dose Group	vp	Ad5.AC _{VI}	Placebo	
		- <i>n</i> -	- n -	
1	3.2×10^9	3	1	
2	10 ¹⁰	3	1	
3	3.2×10^{10}	9	3	
4	10 ¹¹	9	3	
5	3.2×10^{11}	21 (9+12)	7 (3+4)	
Dose 5 Comparison		21	15	
Total Patients		45	15	

- Placebo group is proposed
- 15 patients will receive placebo and 45 will receive Ad5.AC_{VI}
- DSMB may recruit additional patients in groups of 8 (6:2) if trend for efficacy seen
- In example, 16 additional patients recruited in Dose Group 5
- Comparison: 21@ 3.2 x 10¹¹ vs 15 Placebo

- Placebo Group -*Ethical Considerations*

- Data (safety & efficacy) will interpretable only if collected & analyzed in a double-blinded manner.
- Coronary angiography is recommended for patients with CHF. Whether patients enroll in the trial or not, they should undergo coronary angiography.
- The consent form indicates patients will undergo coronary angiography with a 1 in 4 chance of receiving placebo. The risks are clearly presented no duress will be placed on patients to enroll.

Helsinki Declaration — "Biomedical research involving human subjects must conform to generally accepted scientific principles..."

Funding

- National Institutes of Health (NHLBI PEGT)
- Department of Veteran's Affairs
- American Heart Association

Contributors

N. Chin Lai Mei Hua Gao David M. Roth Tong Tang Jeff Drumm Matthew Spellman Tracy Guo David A. Roth Suzy Fine