Phase I trial of systemic administration of Edmonston strain of measles virus, genetically engineered to express NIS, with or without cyclophosphamide, in patients with recurrent or refractory multiple myeloma

Angela Dispenzieri
MV-NIS protocol PI

David Dingli
Lead scientist

Kah Whye Peng
Pharm/tox

Evanthia Galanis
MV-CEA protocol PI

Mark Federspiel
Manufacture

Steve Russell
Sponsor

Anthony Welch
NCI RAID Program

Karen Schweikart
NCI RAID Program
Multiple myeloma

Plasma cell malignancy
Paraproteinaemia
Bone destruction
Hypogammaglobulinaemia

Currently incurable
11,000 deaths per year (USA)
Disseminated from outset
Survival ~ 4yrs
Virotherapy

Viruses destroy tissue

Maybe this destructive power could be harnessed for cancer therapy
Measles as an oncolytic agent

Bluming and Ziegler (1971) Lancet ii, 105-106

- Efficiently infects and kills human myeloma cells (via CD46)
- Selectively kills myeloma cells, spares normal cells
- Has potent antitumor activity against xenograft models of human multiple myeloma
- Can be engineered to express additional genes; recombinants are extremely stable
Edmonston Vaccine Lineage
(Rota et al. 1994, Virus Res., 31:317)

Edmonston
 HK/24
 HK/24
 HA/28
 HA/28

Edmonston-Enders
 HK/7
 Vero/6
 HA/12
 SK (33°C)/17*
 CEF (33°C)/22*

AIK-C

Edmonston Seed A
 HA/28
 CE (am)/22
 DK/15
 WI-38/19*

Zagreb

Edmonston Seed B

CEF(36°C)/3
CEF(36°C)/8
CEF(32°C)/40
CEF(32°C)/85
CEF(36°C)/22
CEF(36°C)/5
CEF(33°C)/22*
CEF (32°C)/85

Schwarz

Edmonston B
 Rubeovax

Moraten

MV-SPUD

Infectious clone

(Radecke et al., 1995 EMBO J, V14, p5773)
Measles virus cytopathic effect (cell fusion)

Viable syncytium

Non viable syncytium

Entry

Fusion

Apoptosis
Fusogenic proteins: measles F and H

H binds to CD46 or SLAM
F triggers fusion

SLAM is expressed only on activated immune cells.
CD46 is ubiquitous
CD46 is overexpressed on human myeloma cells.....
High CD46 expression in multiple myeloma

- Expressed at higher density on myeloma cells
- NOT myeloma specific
- Therapy should specifically attack high density

Unsorted bone marrow aspirated from patients with multiple myeloma
Syncytial Index

Cell Killing

Syncytial index

Cell viability

Syncytial Index

Cell Killing
MV-Edm oncolytic activity in myeloma

Measles virotherapy for myeloma: Problems with MV-Edm.

1. Inability to monitor spread

2. Anti-measles antibodies may block vascular delivery

3. Anti-measles cytotoxic T lymphocytes may prevent intratumoral spread
Recombinant measles viruses

MV-CEA: IP
ovarian cancer

MV-NIS: IV
multiple myeloma
MV-CEA Clinical Protocol

• Advanced ovarian cancer

• IP administration of MV-CEA in 500 ml saline

• Repeated every four weeks x 6

• Dose escalation (10^3 to 10^8)

• CEA monitoring to guide dose escalation

• No manufacturing problems

• Six patients treated (three at 10^3, three at 10^4)

• No dose-limiting toxicities

• Transient viremia in two patients

• No CEA elevations yet......
The thyroidal sodium iodide symporter (NIS)

Radioiodine

I-123 gamma 0.5 days
I-124 positron 4 days
I-125 gamma 60 days
I-131 beta + gamma 8 days
Tc99m gamma 0.2 days
Imaging virus spread (MV-NIS)

I-123 or I-124 ip

NIS gene

Gamma camera

SPECT/CT

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

PET/CT

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

MV-NIS iv

NIS protein

I-123 or I-124 ip

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
MV-NIS (intravenous) is a potent anti-myeloma agent

KAS6/1 model

- UV-inactivated
- 10^4 MV-NIS
- 10^5 MV-NIS
- 10^6 MV-NIS
- 10^7 MV-NIS

Tumor volume (mm3) vs. Time After Therapy (days)
Measles virotherapy for myeloma: Problems with MV-Edm.

1. Inability to monitor spread

2. Anti-measles antibodies may block vascular delivery

3. Anti-measles cytotoxic T lymphocytes may prevent intratumoral spread
Low Anti-Measles Antibody Titers in Myeloma Patients

- Normal
- MGUS
- MM
- MM (SCT)
Cyclophosphamide suppresses immune response to MV

IFNAR Ko CD46 Ge mice

IP injection MV-CEA

+- cyclophosphamide 125 mg/kg

Peng et al, Nature Medicine 2002, 8, 527-531
The Status of Myeloma Therapy

- Progress past decade….
 - Transplantation, thalidomide, lenilidomide, bortezomib
- But patients dying—no cure in sight
 - 11,000 deaths per year; 15,000 new cases
- Innovative therapies are required
No Survival Plateau

- Single versus Double Transplant

- Median EFS < 3 years

Attal NEJM 349:2495-02
Phase I Trial

Step 1: MV-NIS alone

<table>
<thead>
<tr>
<th>Agent</th>
<th>Dose</th>
<th>Route</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV-NIS</td>
<td>10^6 to 10^9</td>
<td>30 min I.V.</td>
<td>1</td>
</tr>
</tbody>
</table>

TCID$_{50}$

Step 2: MV-NIS + Cyclophosphamide

<table>
<thead>
<tr>
<th>Agent</th>
<th>Dose</th>
<th>Route</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclo</td>
<td>10 mg/kg</td>
<td>I.V.</td>
<td>-2</td>
</tr>
<tr>
<td>MV-NIS</td>
<td>$MTD/100$ to $81 \times MTD/100$</td>
<td>30 min I.V.</td>
<td>1</td>
</tr>
</tbody>
</table>
Trial Schema

CTX MV-NIS

Day -4 -2 1 3 8 15 20 28 42 Q 3 mo

Cyclophosphamide
MV-NIS
CBC, chemistry, coagulation
Viral levels, Blood, sputum & urine

KEY
- Free light chain
- 123-I gamma camera imaging
- Bone marrow aspirate/biopsy
- Anti-MV antibody and T cell subsets
Potential toxicity & complications

1. Cytomel: tachycardia, tremor

2. 123-I: none

3. MV-NIS
 a. Infusion reaction
 b. Measles-like illness
 c. Virus transmission

4. Cyclophosphamide
 a. Immunosuppression: worsening of 2b-c?

Screen for symptomatic CAD and arrhythmia. Reduce dose to 25 mcg bid
Potential toxicities-MV-NIS

Infusion reactions

- **Allergic** → acetaminophen & benadryl
- **Rigors** → meperidine hydrochloride
- **Anaphylaxis** → cessation of infusion; fluids, benadryl, methylprednisone and epinephrine
Potential complications-MV-NIS

Measles-like illness

Fever, rash, coryza, transient immune suppression ± otitis media, pneumonia, encephalitis

Possible since myeloma patients are immunocompromised, but should be self-limited because….
Potential complications-MV-NIS

Measles-like illness

.... because measles vaccine....

-strains are extremely safe after billions of doses administered

-is recommended for
 - HIV-infected children
 - Immunosuppressed patients following HSCT

- We routinely give MMR post HSCT to MM patients
Potential complications-MV-NIS
Measles-like illness

Contingency plan

- Measles immunoglobulin
- Ribavirin

Potential complications-MV-NIS

Safety of Starting Dose?

- 10^6TCID_{50}
 - HIV$^+$ & HIV$^-$ infants
 - Edmonston IV to monkeys
 - Upcoming primate studies

- **Efficacy**: Lowest effective in mice:
 - $\text{TCID}_{50} 10^5 \sim 5 \times 10^6$/kg; Trial starting dose:
 - $10^6 \sim 1.4 \times 10^4$/kg in 70 kg human
Potential toxicities-MV-NIS

Transmission to contacts?

- **RNA virus** – *mutation possible, but...*

- **Vaccine strains of measles** never reported to revert and/or to be transmitted

- **Vast majority of U.S. citizens vaccinated for measles**
Possible pharmacology/toxicology models

1. **CD46 transgenic IFNaRko mice** (+/- SCID)

2. CD46 transgenic pigs

3. Cotton rats

4. **New world (eg squirrel) monkeys**
 Old world (eg rhesus) monkeys

3. +/- cyclophosphamid

Issues:

- CD46 expression
- SLAM expression
- intracellular restriction
MV-NIS biodistribution in CD46tg, IFNARko mice (preliminary)

Group 1: 10^5 TCID50 MV-NIS
Group 2: 10^7 TCID50 MV-NIS
Group 3: UV-inactivated MV-NIS
Group 4: 125 mg/kg cyclophosphamide plus 10^7 TCID50 MV-NIS

Studies performed day 90 after MV-NIS administration were negative for all organs, all groups.
Potential complications-MV-NIS

Measles-like illness, virus persistence or transmission?

- Primate Toxicology
 (12 Squirrel Monkeys)

- Primate studies with scheduled sacrifice
 - Two monkeys from each group: day 29
 - Remaining animals: day 91

<table>
<thead>
<tr>
<th>Group</th>
<th>MV-NIS (TCID\textsubscript{50})</th>
<th>CTX (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>II</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>III</td>
<td>10^8</td>
<td>0</td>
</tr>
<tr>
<td>IV</td>
<td>10^8</td>
<td>31</td>
</tr>
</tbody>
</table>
Squirrel Monkey Schema

KEY
- **CTX**
- **MV-NIS**
- **Sacrifice-necroscopy**
- **CBC, chemistry, coagulation**

- **Green Arrow**: Cytokine measurement
- **Red Arrow**: Anti-MV antibody measurement
- **Blue Arrow**: Viral levels, sputum & urine (PCR)
- **Purple Arrow**: Viral levels, blood (PCR)
Monkey Necropsy Samples (41)

- Kidneys, bladder, adrenals
- Bone, femoral head with articular surface
- BM: sternum and rib
- Eyes, brain, pituitary, spinal cord, sciatic nerve
- Stomach, esophagus, duodenum, jejunum, ileum, cecum, colon
- Gonads, prostate, epididymides
- Liver, spleen, gall bladder, pancreas
- Gross lesions
- Heart, Aorta
- Lip, salivary gland, tongue, tonsils
- Lungs, trachea
- LN: bronchial, mandibular, mesenteric
- Mammary gland
- Skeletal muscle
- Skin: ventral abdomen, injection site
- Thymus, thyroid, parathyroid
Summary

- Myeloma is an incurable disease with pressing need for innovative therapeutic strategies
- MV-NIS targets myeloma cells preferentially using CD46
- Preclinical data and careful trial design lead us to believe that we can safely administer this therapeutic agent