Clinical Results:

Phase I Trial

Ex Vivo Nerve Growth Factor Gene Therapy for Alzheimer’s Disease

- Cognitive Testing
- PET scans

(In press, Nature Medicine)

MLV vector transduced primary autologous fibroblasts, grafted into Nucleus Basalis
UCSD:
Mark Tuszyński, M.D., Ph.D.
Leon Thal, M.D.
Mary Pay, N.P.
David Salmon, Ph.D.
Gilbert Ho, M.D.
Gang Tong, M.D.
Steve Imbesi, M.D.

Molecular/Cellular:
Armin Blesch, Ph.D. (UCSD)
Lee Vahlsing, M.S. (UCSD)
James Conner, Ph.D. (UCSD)
Elliott Mufson, Ph.D. (Rush Univ.)
Jeffrey Kordower, Ph.D. (Rush Univ.)
Christine Gall, Ph.D. (UC-Irvine)

Surgery:
Hoi-Sang U, M.D. (UCSD)
Roy Bakay, M.D. (Rush)
John Alksne, M.D. (UCSD)
Piyush Patel, M.D. (UCSD)
Peter Amis (San Diego)

PET Studies:
Steve Potkin, M.D. (UC-Irvine)
James Fallon, Ph.D. (UC-Irvine)
David Keator, M.S. (UC-Irvine)

Support: Institute for the Study of Aging (ISOA) and the Shiley Family Foundation, NIH

Conflict of Interest Statement: Mark Tuszyński, Armin Blesch, Jeffrey Kordower are scientific founders of Ceregene, Inc.
Growth Factor Premise:

Growth factors potently

- prevent death of responsive cell populations
- augment function of responsive cell populations

Potential for the treatment of progressive diseases of the nervous system
NGF Prevents Cholinergic Neuron Death in the Adult Primate Brain
Clinical Assessment Group

- 6 subjects: 5F, 1M who safely completed cell injection procedure
- Mean Age: 67.1 years (range 53-76 years at entry)
- Diagnosis of early, Probable Alzheimer’s disease
 - recruited at early disease stage to allow informed consent and to test potential for neuroprotection

- Dose escalation:
 - 1-2: 25 ul cells, right-NBM only (5 ul per site, 2.5x10^6 cells)
 - 3-4: 50 ul cells total, bilateral (5 ul per site, 5.0x10^6 cells)
 - 5-6: 100 ul cells total, bilateral (10 ul per site, 10x10^6 cells)
RESULTS:

Phase I Trial of Ex Vivo Gene Therapy for Alzheimer’s Disease: Cognitive Function

1. Mini-Mental Status Examination
 • 30 point scale; mean score = 20.7 ± 2.0 at time of treatment

2. ADAS-Cog
 • 70 point scale

Open small phase I trial
• no placebo controls
• no blinding
Mean MMSE Score

Mean MMSE

-12 mo 0 mo 3 mo 6 mo 9 mo 12 mo 18 mo 24 mo

+NGF
- 49% Reduction in Rate of Decline Over 2.2 Years
- Effect of Cholinesterase Inhibitors ~5%, for 3-6 Months
Annual Rate of Change in Mean ADAS-Cog Score

Mean ADAS-Cog Score

Worse

Better
Change in Mean ADAS-Cog Over Time

Annual Mean Rate of Decline

Better

Worse

Time Epochs

1-12mo 6-18mo 12-24mo
• Median Rate of Decline Over 2.2 yr Period = 4.4 pt/yr
RESULTS
Phase I Trial of Ex Vivo Gene Therapy for Alzheimer’s Disease: PET Imaging

1. 2-deoxy glucose uptake as reflection of metabolic activity
 • PET activity declines over time in AD

2. Serial PET scans in four subjects (bilaterally injected):
 • showed increased mean cortical PET activity after NGF delivery (p<0.05)
PET Scan Averages, 4 Bilaterally Treated Subjects

Scan 1

Scan 2

2-DG

P<0.05 Scan 2 vs. Scan 1
CONCLUSIONS:
Phase I Trial of Ex Vivo Gene Therapy for Alzheimer’s Disease:

1. **No adverse effects** related to the growth factor or the gene delivery system in the human brain using a non-regulated vector (2-4 yr period)

2. Significant increase in cortical activity by 2DG PET Scan

3. Cognitive analysis (in small, unblinded, non-controlled cohort) shows apparent reduction in rate of decline to an extent substantially exceeding effects of current AD therapies, providing rationale for a follow-up trial of AAV-NGF in AD
Phase I Trial of Ex Vivo Gene Therapy for Alzheimer’s Disease:

AAV-NGF gene delivery for AD
1. Genetically modified cells accurately located within brain
2. Cell survival and morphology consistent with previous non-human primate studies
Robust in vivo gene expression at 5 wk
“Trophic” Response to NGF in the AD Brain
Cholinergic Neurons in AD Express a Trophic Response to NGF

“Trophic” response in human AD

“Trophic” response in aged primate