Phase I Trial of Immunotherapy with BHT-3009 Alone or Combined with Atorvastatin in Patients with Multiple Sclerosis

Recombinant DNA Advisory Committee Meeting
June 8, 2004
BHT-3009 Treatment of Multiple Sclerosis

- Antigen-specific immunosuppression - Well established
 - Pre-clinical models
 - Approved product - Copaxone
 - Multiple products in clinical development

- Plasmids
 - Typically used to enhance immunity
 - Immunosuppressive in correct context

- BHT-3009
 - Strong pre-clinical rationale
 - Good safety profile
 - Phase I trial designed for careful safety monitoring
Multiple Sclerosis (MS)

- Autoimmune disease of nervous system
- Immunological attack on the myelin sheath
- 400,000 patients in US
- Women > men
- Age < 40 years
- Clinical course
 - Relapsing remitting
 - Secondary progressive
 - Primary progressive
 - Progressive relapsing
- Lifelong progression to near total disability

Paralysis, numbness, disequilibrium, incontinence
Multiple Sclerosis

- Treatment Goal: Prevent relapses and progression of neurological disability
- Corticosteroids
 - Accelerate recovery from relapses
- Disease modifying agents
 - Interferon, Copaxone
 - Decrease relapses about 30%
 - Modest effect on disability progression
- Antigen-specific immunotherapy for MS in development
MS Target Antigens

- Known and well characterized self antigens
 - Human immunology
 - Established animal models
- Myelin basic protein (MBP)
- Proteolipid protein (PLP)
- Myelin oligodendrocyte glycoprotein (MOG)
- Myelin associated glycoprotein (MAG)
Trials of MBP-Specific Immunotherapy of MS

- **Copaxone**
 - Random polymers of 4 amino acids derived from immunodominant epitope of myelin basic protein (MBP)
 - Decreased antigen-specific T cell response, Th2 deviation
 - Approved for treatment of MS

- **MBP8289 (17 AA fragment of MBP)**
 - Tolerization and decreased antibody response to MBP
 - In Phase III trial

- **APL (Altered MBP83-99)**
 - Decreased antigen-specific T cell response
 - In phase IIb trial (ITN-sponsored)
MBP-specific Immunotherapy of MS: Safety

- **Worsening MS not observed with Copaxone, oral myelin, MBP8289**

- **APL**
 - Open label single arm trial of high dose APL:
 - 2 of 8 patients had relapses
 - Randomized, double blind trial of APL:
 - 142 patients
 - 26% of placebo patients worsened
 - 18% - 23% of APL-treated patients worsened
 - Currently in 600 patient ITN sponsored Phase IIb trial

- **Hypersensitivity reactions**
 - Observed with Copaxone, APL (& IFNβ)
 - No IgE or anaphylaxis
 - No impact on disease activity
 - Limited relevance to plasmid-based vaccines
 - Atorvastatin
 - No increase in hypersensitivity reactions
 - Concurrent vaccination is safe
BHT-3009: Designed for Immunosuppression

- Encodes DNA for full length hMBP
- No adjuvant
- Immunostimulatory CpG sequences reduced
BHT-3009: Non-Clinical Studies

- **Efficacy studies**
 - Experimental allergic encephalomyelitis
 - Dose and schedule

- **Safety**
 - EAE models
 - Biodistribution
 - Cynomolgus monkey study
EAE Model of MS

- SJL/J mice
- Well characterized model
- Relapsing & remitting course typical of MS
- Immunological mechanisms similar to human MS
- Immunodominant epitope: PLP
BHT-DNA Treats Established EAE

Mean Disease Score

Relapse Rate

BHT-DNA reduces both disease severity and relapse rates in a treatment model

p value = <0.0001 (Mann-Whitney)

*p value = 0.04 (ANOVA-Dunnett Hsu)
Inhibition of Antigen-Specific T-Cells

Reduced Proliferation

Reduced IFN\(\gamma\) Production

Journal of Immunology, 1999
BHT-3009
Dose & Schedule

BAYHILL THERAPEUTICS
DNA: Dose Response

IFN-gamma ELISPOT

- **PBS gavage + PBS injection**
- **Atorva 10mg/kg + 2ug PLP**
- **Atorva 10mg/kg + 10ug PLP**
- **Atorva 10mg/kg + 50ug PLP**
- **Atorva 10mg/kg + 200ug PLP**
Treatment Schedule

Every 2 to 4 week treatment decreases IFN-γ production
BHT-3009
Safety - Toxicity
Administration of PLP-Vector to SJL/J Mice Did Not Cause or Worsen EAE

- Administration to naïve animals (4 biweekly injections)
 - No significant anti-PLP antibodies
 - No clinical signs of EAE
 - Histopathology: no lymphocytic infiltration of brain
 - Induction of modest levels of anti-DNA antibodies (3 of 20 mice)

- Administration of PLP-vector to animals either prior to or after induction for EAE with PLP_{139-151} peptide
 - Effective for preventing and treating EAE
 - EAE-related mortality
 - 3 of 232 PLP-Vector treated mice
 - 3 of 208 control mice
<table>
<thead>
<tr>
<th>Biodistribution of BHT-3009 DNA: (150 µg single dose)</th>
<th>Positive Tissues at Each Sacrifice Time-point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 3: Blood, Heart, Brain, Kidney, Inguinal LN, Iliac LN, Skin at SOA, injected muscle</td>
<td></td>
</tr>
<tr>
<td>Day 14: Brain, inguinal LN, Iliac LN, Skin at SOA</td>
<td></td>
</tr>
<tr>
<td>Day 42: Heart, skin at SOA</td>
<td></td>
</tr>
<tr>
<td>Day 70: Skin at SOA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expression of hMBP RNA (50 µg single dose)</th>
<th>Day 3: Inguinal LN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 7: Iliac LN, injected muscle</td>
<td></td>
</tr>
<tr>
<td>Day 28: Skin at SOA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expression of hMBP RNA (150 µg single dose)</th>
<th>Day 3: Iliac LN, blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 7: Iliac LN, skin at SOA, muscle</td>
<td></td>
</tr>
<tr>
<td>Day 14: Iliac LN</td>
<td></td>
</tr>
<tr>
<td>Day 28: Skin at SOA</td>
<td></td>
</tr>
<tr>
<td>Day 42: No tissues expressing hMBP</td>
<td></td>
</tr>
</tbody>
</table>
GLP Toxicity Study in Cynomolgus Monkeys

Species

<table>
<thead>
<tr>
<th>Macaca fascicularis</th>
</tr>
</thead>
</table>

Dose Groups

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Vehicle control for BHT-3009 (PBS) & atorvastatin (0.5% CMC/0.1% Tween 80)</td>
</tr>
<tr>
<td>B</td>
<td>150 µg BHT-3009</td>
</tr>
<tr>
<td>C</td>
<td>1500 µg BHT-3009</td>
</tr>
<tr>
<td>D</td>
<td>1500 µg BHT-3009 + atorvastatin at 20 mg/kg/day</td>
</tr>
</tbody>
</table>

Treatment

- BHT-3009 (or PBS vehicle) administered bi-weekly (Days 1, 15, 29 and 43)
- Atorvastatin (or vehicle control) administered daily on Days 1 to 49
No pre-terminal mortality
No adverse clinical observations
Mean values for serum and hematology parameters within normal ranges
 - Trends towards a slight increase in ALT and AST in atorvastatin at 20 mg/kg/day group
No gross or organ weight findings in terminal or recovery animals
No histopathologic changes in either terminal or recovery animals
 - Including: cerebrum, thalamus, brain stem, cerebellum, spinal cord, sciatic nerve and bulbus oculi
No effects on percentages of peripheral blood immune cells
No induction of anti-dsDNA, anti-nuclear, or anti-hMBP antibodies
Summary of Pre-clinical Data

- EAE/efficacy data support a DNA dose frequency of biweekly or monthly.
- EAE/efficacy data supports efficacy over a wide range of DNA dose levels.
- No concerning safety or toxicology issues.
Phase I Trial of Immunotherapy with BHT-3009 Alone or Combined with Atorvastatin in Patients with Multiple Sclerosis

IND Cleared 4/04
CTA (Health Canada) Cleared 4/04
2 Directorates: BGTD & TPD
Reduced Antibody Responses

PLP, MBP, MOG & MAG plasmids

Antigens shown are statistically significant for variation of response across each group.

(published in Nature Biotech 2003)

Immune Activation

- APC (e.g. Dendritic cell)
- MHC
- TCR
- B7
- CD28
- Activation

Immune Tolerance

- APC (e.g. Dendritic cell)
- MHC
- TCR
- B7
- CD28
- Tolerance

Self-antigen Encoding DNA

Lack of Co-stimulation
<table>
<thead>
<tr>
<th>Disease Grade</th>
<th>Clinical Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Healthy</td>
</tr>
<tr>
<td>1</td>
<td>Loss of Tail Tone</td>
</tr>
<tr>
<td>2</td>
<td>Hind Limb paraparesis</td>
</tr>
<tr>
<td>3</td>
<td>Hind Limb paralysis</td>
</tr>
<tr>
<td>4</td>
<td>Complete paralysis</td>
</tr>
<tr>
<td>5</td>
<td>Death</td>
</tr>
</tbody>
</table>
MBP-specific Immunotherapy of MS: Safety Issues

- Hypersensitivity reactions/anaphylaxis
 - Observed with Copaxone, APL
 - Risk benefit ratio determines acceptability
 - Limited relevance to plasmid-based vaccines

- Worsening MS
 - Theoretical concern
 - Not observed in Bayhill’s preclinical studies
 - Not supported by clinical data
 - Treatable with high dose steroids
 - Not observed with Copaxone, oral myelin, MBP8289
 - APL
 - Open label single arm trial:
 - 25% worsened (2 of 8 patients)
 - Randomized, double blind trial:
 - 142 patients
 - 26% of placebo patients worsened
 - 18% - 23% of APL-treated patients worsened
Bayhill: Background

▪ **FOUNDERS**

 ▪ Lawrence Steinman, M.D.
 - Chair, Department Immunology
 Stanford University

 ▪ William Robinson, M.D., Ph.D.
 - Assistant Professor of Medicine in
 the Division of Immunology
 and Rheumatology at Stanford
 University

 ▪ PJ Utz, M.D.
 - Assistant Professor of Medicine in
 the Division of Rheumatology
 and Immunology at Stanford
 University

 ▪ Hideki Garren, M.D., Ph.D.
 - Clinical Faculty at Stanford Medical
 School
 - Bayhill: Director, Molecular Biology
 and Immunology

▪ **MANAGEMENT**

 ▪ Mark Schwartz, Ph.D., CEO
 - Calyx, Trega, Synteni, Incyte

 ▪ Frank Valone, M.D., Clinical
 - Dendreon, Titan

 ▪ Hideki Garren, M.D., Ph.D., Research
 - Stanford, Bayhill Founder

 ▪ Stephanie Broome, Ph.D., Regulatory
 - PRA International, SIBIA,
 PowderJect

 ▪ Martin Goldstein, J.D. Corp.
 Development
 - Virologic, Roche, Genentech
Multiple Sclerosis

- Relapsing-remitting course
- Life-long progression to total disability
- Treatment Goal: Prevent relapses and progression of neurological disability
- Corticosteroids – relapses
- Disease modifying agents
 - Interferon
 - Copaxone
 - Mitoxantrone
- Treatment is non-specific immunosuppression
- Antigen-specific immunotherapy for MS in development
Bayhill: Background

- Founded Spring, 2002
- Based in Palo Alto, CA
- 24 employees
- Focus on antigen-specific immunotherapy of autoimmune diseases
- Multiple technology platforms
 - Protein array
 - Plasmid DNA for immunosuppression
 - Multiple sclerosis
 - Type 1 diabetes
 - Rheumatoid arthritis
BHT-DNA reduces both disease incidence and severity in a prevention model.

Journal of Immunology, 1999
<table>
<thead>
<tr>
<th></th>
<th>Mean Disease Score (compared to each other)</th>
<th>Mean Disease Score (compared to respective control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QW</td>
<td></td>
<td>P=0.22</td>
</tr>
<tr>
<td>Q2W</td>
<td>Q2W injections decrease MDS by 0.25</td>
<td>P<0.001</td>
</tr>
<tr>
<td></td>
<td>(p=0.01)</td>
<td></td>
</tr>
<tr>
<td>Q4W</td>
<td>Q4W injections decrease MDS by 0.12</td>
<td>P<0.001</td>
</tr>
<tr>
<td></td>
<td>(p=0.01)</td>
<td></td>
</tr>
</tbody>
</table>